UNIVERSITÄT BERN

Dr. Beatriz Vidondo

Veterinary Public Health Institute UniBe

Objectives

Identify non-Normal data visually and by testing for it

Compare non-Normal groups

Multiple comparison corrections

Data Types

VARIABLE

Skew

Kurtosis

Normal distribution:
Kurtosis $=3[2,4]$

Modality

Zero Inflation

Who you Want to Call?

Who you Want to Call?

Percentiles!

Box and Whiskers Plot (Normal)

Maximum Outliers

97.5th percentile

2.5th percentile

50th percentile
Median

First Quartile \qquad
\qquad Minimum, Outliers

Box and Whiskers Plot (Skewed)

Maximum,
 Outliers

Outliers
\qquad
97.5th percentile
50th percentile \qquad
 Median Minimum, \qquad Outliers

95\%
50\%

Empirical Cumulative Distribution Function

Percentiles

- Sort observations from min to max
- Take 100 segments (1\%-segments)
- 25 th percentile is the value below which 25% of the data can be found

80th percentile is the value below which 80% of the data is found

For someone as tall as the 80th percentile, 80% of people are shorter

Quantile Quantile Plot QQ-Plot

"a graphical method for comparing two probability distributions by plotting their quantiles against each other"
_Wilk, M.B.; Gnanadesikan, R. (1968)

Skewed Right

Skewed Right

Z

Theoretical Quantiles

Right Skew and Log Transformation

Skewed Left

https://seankross.com/2016/02/29/A-Q-Q-Plot-Dissection-Kit.html

Skewed Left

Normal Q-Q Plot

Theoretical Quantiles

Bimodal

Bimodal

Normal Q-Q Plot

Theoretical Quantiles

Normality Tests - Each Group Separately

When our research question is about comparing two groups We need to test each group separately
https://www.datanovia.com/

Normality Tests

Shapiro-Wilk

```
R function shapiro.test()
```

Ho: data is Normally distributed
If p-value > 0.05 we can not reject Ho

Kolmogorov-Smirnov
R function ks.test()

One-sample test to compare to Normal or a two-samples test
Ho: two samples were drawn from the same distribution

```
x <- rnorm(50) ; y <- runif(30)
# Do x and y come from the same distribution?
ks.test(x, y)
```


Comparing Independent non-Normal Distributions

Mann-Whitney U Test

Given two identically shaped and scaled distributions, Ho: are the medians different?

Mann-Whitney U Test

Wilcoxon 1945
Mann \& Whitney 1947
Mann-Whitney-Wilcoxon

R function wilcox.test($\mathrm{y}^{\sim} \mathrm{x}, \mathrm{paired}=$ FALSE)

Kruskal Wallis Test: More than Two Groups

https://statistics.laerd.com/spss-tutorials/kruskal-wallis-h-test-using-spss-statistics.php

Kruskal Wallis Test

W. H. Kruskal, W. A. Wallis 1952

One-way ANOVA on ranks

Similar assumption as Mann-Whitney U
For identically shaped and scaled distribution for all groups, Ho: are the medians different?

Kruskal Wallis Test


```
R function
kruskal.test()
```

https://en.wikipedia.org/wiki/Kruskal\�\�\�Wallis_one-way_analysis_of_variance

Multiple Comparisons Corrections

The more comparisons we make, the higher the chances of rejecting Ho

Multiple Comparisons Corrections

One comparison
Significance level $=0.05$

Reduce the level of significance (alfa) for each comparison
So that the probability of getting one wrong is the same as if only one comparison was made

Multiple Comparisons Corrections

Goal: compare each pair of medians/means (or the one of interest) WHILE achieving an overall Type I error < 5\%

R function dunn.test()
dunn.test($\mathrm{y}^{\sim} \mathrm{x}, \mathrm{method}=$ "bonferroni")
Performs a Kruskal Wallis test with Bonferroni correction

Multiple Comparisons Corrections

For Non-Normal (independent) groups comparisons

```
dunn.test(y ~ x, method = "bonferroni")
pairwise.wilcox.test(y,x, p.adjust.method = "bonferroni")
pairwise_wilcox_test(y,x, p.adjust.method = "bonferroni")
```

For Normal (independent) group comparisons

```
stats::pairwise.t.test(y ~ x, p.adjust.method = "bonferroni")
rstatix::pairwise_t_test(y ~ x, p.adjust.method = "bonferroni"
https://rpkgs.datanovia.com/rstatix/
```


Reasons Not to Correct p-values

- The sample size (n) calculation depends on both type I (alfa) and type II (beta) errors
- So if we decrease alfa and don't increase n, then beta error increases (to keep the equation)
- Result: We loose statistical power
- We would need to increase the sample size to keep the same power
- This is a problem when sample size is small (occurs often)
- Solution: focus on fewer comparisons

Summary

- Skewness, kurtosis, modality, zero-inflation
- Percentiles (Ghostbusters! ©) and ecdf
- QQplots and Normality tests (Shapiro-Wilk, Kolmogorov-Smirnov)
- Mann Whitney U test to compare 2 groups (wilcox.test())
- Tests that include multiple comparison corrections (pairwise comparisons with Bonferroni correction)

Table to Choose the Right Test

1.Measurement scale and distribution of dependent (outcome) variable ($->$ COLUMNS)
2.Study objective related to type and scale of independent (often group) variable ($->$ ROWS
3.Independent or dependent observations between subjects?

	Type of dependent variable ("outcome ${ }^{\text {ar }}$ or y -variable)			
Study objective	Interval data (normally distributed measurements)	Ranks, Scores, or non-normally distributed measurements	Binary outcome (two levels)	Survival Time
Describe a single study group (summaries, frequencies)	Mean, median, mode, SD, SEM, percentiles	Median, range, interquartile range, percentiles	Freq, Proportion (Prevalence) + $95 \% \mathrm{CI}$	Kaplan Meier survival curve
Compare a sinqlestudy group to a fixed (population) value	Single sample t test	Wilcoson SignedRank test	Single sample proportion test	
Compare two independent study groups	Independent samplet test	Two-sample Wilcoxon (Rank Sum) test	Two-sample proportions test (Chisquare, FET)	Log-rank test or Mantel-Haenszel
Compare two paired (dependent) sample study groups	Paired sample t test	Paired sample Wilcoxon (SignedRank) test	McNemar'stest, Kappe statistic	Conditional proportional hazards regression
Compare three or more unmatched (independ.) study groups	One-way ANOVA	Kruskal-Wallis Test	Proportions test (Chisquare) Logistic Regression	Coxproportional hazard regression
Compare three or more matched (dependent) groups	Multiway ANOVA	Friedmantest	Cochrane Q	Conditional proportional hazards regression
Quantify correlation between two variables	Pearson correlation	Spearman Rank correlation	Contingency coefficients	
Predict outcome value from another interval or categorical variable	Generalized linear Models: Simple Linear regression or ANOVA	Nonparametric regression	Cross tabulation (Odds ratio), Simple logistic regression	Cox proportional hazard regression
Predict outcome value from several measured (interval), categorical or binomial variables	Generalized linear Models: Multivariable Linear regression or ANOVA	Generalized linear models accommodating nonparametric components	Stratified cross tables, multiple logistic regression	Cox proportional hazard regression

Questions

Thanks for your attention

UNIVERSITÄT

Correlation Coefficients
 Association Continuous Variables

Dr. Beatriz Vidondo

Veterinary Public Health Institute UniBe

Objectives

Understand correlation coefficients and know when to apply which type of correlation coefficient

Take appropriate choices when deleting/excluding missing values to calculate correlation

Interpret correlation correctly

Correlation Coefficient Definition

numerical measure of some type of association, meaning a statistical relationship between two variables

> Do they vary "together"?

Dancing statistics: explaining the statistical concept of correlation through
$\underline{\text { dance - YouTube }}$
$\underline{\text { https: } / / w w w . y o u t u b e . c o m / w a t c h ? v=V F j a B h 12 C 6 s ~}$

Correlation Coefficient Definition

numerical measure of some type of association, meaning a statistical relationship between two variables

Variance of one variable: $\quad \operatorname{Var}(\mathrm{Y})=\sigma^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}$

Correlation Coefficient Definition

numerical measure of some type of association, meaning a statistical relationship between two variables

Variance of one variable: $\quad \operatorname{Var}(\mathrm{Y})=\sigma^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}$

Covariance between 2 vars: $\quad \operatorname{Cov}(X, Y)=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$

Correlation Coefficient Definition

numerical measure of some type of association,

 or a statistical relationship between two variablesVariance of one variable: $\quad \operatorname{Var}(\mathrm{Y})=\sigma^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}$

Covariance between 2 vars: $\quad \operatorname{Cov}(X, Y)=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$

$$
\text { Correlation Coefficient (Pearson): } \quad r_{p}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

Different Correlation Coefficients

Pearson - a measure of the strength and direction of the linear relationship between two variables

Spearman - a measure of how well the relationship between two variables can be described by a monotonic function

Kendall - measure of the portion of ranks that match between two variables

Pearson vs. Spearman

Spearman correlation coefficient uses the ranks R of the variables instead of the variables

$$
r_{p}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}} ; \quad r_{S}=\frac{\operatorname{cov}(R(X), R(Y))}{\sigma_{R(X)} \sigma_{R(Y)}}
$$

Kendall Rank Correlation Coefficient

$$
\tau_{s}=\frac{\text { number of concordant pairs }- \text { number of discordant pairs }}{\text { total number of possible pairs }}
$$

395 concordant points (grey areas)
40 discordant points
(white areas)

Kendall tau $=0.816$

Interpretation

Renders values in the range from -1 to +1 , where ± 1 indicates the strongest possible agreement and

0 the strongest possible disagreement

Interpretation

To be able to interpret correctly, always plot a scatterplot

Strong Positive

Weak Positive

None

Strong Negative

Moderate Negative

Weak Negative

0
\% \% \%
\%

Interpreting Correlation

1. Distortion
2. Distortion by outliers
3. Distortion by missing values
4. Non-Linear and Non-monotonic relationships
5. Correlation does not mean causation

Distortion by Outliers

https://www.jmp.com/en_hk/statistics-knowledge-portal/what-is-correlation/correlation-coefficient.html

Always Calculate With and Without Outliers

https://www.jmp.com/en_hk/statistics-knowledge-portal/what-is-correlation/correlation-coefficient.html

Distortion by Missing Values

Assumption: Missing Values Completely at Random (MCAR)
Need to delete/exclude missing values NA -> otherwise ERROR Deletion/exclusion causes bias in results

Descriptive analysis report \% of missing for each variable

Consider to discard variables with \% missing > 10\%

Missings in the «outcome variable» need to be discarded listwise (the full row, or the full 'case')

Deleting Missing Values

Important when making large Correlation Matrices

Listwise deletion (complete-case analysis)
List = observation = row = case = patient
removes the whole row if any variable value is missing
(casewise) => fewer cases => better to delete some variables

Pairwise deletion (available-case analysis)

For any two pair of variables, delete rows with missings
makes the most of the data available, but uses a different sample size every time => might result in biased results

Options To Delete Missing Values

```
R function cor()
na.rm = TRUE/FALSE
should NA's be removed?
use = "everything", "all.obs", "complete.obs",
"na.or.complete", or "pairwise.complete.obs"
```

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/cor

Options To Delete Missing Values

- "everything" renders cor=NA whenever there are missings
- "na.or.complete" renders cor=NA if there are no complete cases
- "all.obs" only works when no missing values, otherwise ERROR
- "complete.obs" = listwise/casewise deletion (=> less data)
- "pairwise.complete.obs" = pairwise deletion (=> diff sample sizes)
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/cor

Option Missing Value Deletion

R function cor()

- na.rm = TRUE/FALSE
should NA's be removed?
- na.rm $=$ TRUE is equivalent to use = "na.or.complete"
- na.rm = FALSE is equivalent to use = "everything"

Pearson vs Spearman

Pearson measures Linearity Spearman measures Monotonicity

Non-Monotonic associations require other specific non-linear models to capture the pattern

https://anyi-guo.medium.com/correlation-pearson-vs-spearman-c15e581c12ce

Non-Linear and Non-Monotonic Associations

https://www.jmp.com/en_hk/statistics-knowledge-portal/what-is-correlation/correlation-coefficient.html

Require Specific Models and Additional Knowledge

https://www.jmp.com/en_hk/statistics-knowledge-portal/what-is-correlation/correlation-coefficient.html

Correlation Does Not Imply Causation

Causation requires knowledge of the causal mechanism: applying heat makes water boil Correlation is not multivariate, no control for confounders
«On sunny days, one eats ice cream
On sunny days one gets sun burn
No! ice cream causes sun burn»
https://www.eufic.org/en/understanding-science/article/correlation-vs.-causation-infographic

Correlation doesn't always mean causation!

Summary

Pearson correlation coefficient measures linear associations Spearman rank correlation measures monotonic associations

Always plot histograms, scatter plots and check for outliers Always check proportion of missing values

Evidence for causation has to do with study design
Correlation does not imply causation
(regression takes into account confounding factors)

R Exercise

Plot a matrix of scatterplots and histograms

Calculate a correlation matrix

Missing value deletion: pairwise vs list-wise

Choose between Pearson or Spearman

Interpret results

Questions

Thanks for your attention

Dependent Data - Paired, Clustered, Panel Data Dependent Events

Dr. Beatriz Vidondo

Veterinary Public Health Institute, UniBe

Objectives

Identify paired data and plot it adequately

Name tests adequate to compare paired groups

Understand between group/cluster variability and Intraclass Correlation Coefficient

Paired t Test

Two samples of measures on the same individuals
The paired measurements are not independent
Paired-sample t test is a one sample t-test performed on the pairwise differences between the two measurements

1. Calculate the difference (d) between both measures
2. Calculate the mean (m) and the standard deviation (s) of d
3. Compare the average difference to 0 (one-sample test)

Wilcoxon Tests

Frank Wilcoxon described two tests with his name in 1945 "Individual comparisons by ranking methods" Biometrics Bulletin

1) Wilcoxon Rank Sum Test (2 non-normal independent groups)

R function wilcox.test(y~x) default option paired = FALSE (Mann-Whitney U)
2) Wilcoxon Signed Rank to test differences of paired data

R function wilcox.test(y~x, paired = TRUE)

Wilcoxon Signed Rank Test

Uses data ranks (ordering) instead of the actual data

Rank is a score to sort results

Two 'paired' samples lead to a series of differences, some of which are positive (+) and some negative (-)

Signed ranks take the corresponding signs (+) or (-)

Ranking Data

For 8 Blocks = experiment repetitions, $\mathrm{n}=8$ groups Create an ordinal variable or score $1,2,3,4 \ldots n$

Block	A	B	$A-B$	Rank	Signed Ranks:
1	209	151	58	8	
2	200	168	32	7	
3	177	147	30	6	$A-B=5$ gets the smallest rank 1
4	169	164	5	1	6 is the next rank 2
5	159	166	-7	-3	-7 is next rank but gets -3
6	169	163	6	2	-7 is next rank but gets -3
7	187	176	11	5	
8	198	188	10	4	

Wilcoxon's Probability Table

TABLE II

For Determining the Significance of Differences
in Paired Experiments
Number of Paired Sum of rank Probability
Comparisons numbers, + of this total or -, which- or less ever is less
7
0
0.016

7
8
8
20.047
$0 \quad 0.0078$
20.024

Plotting Paired Data

Stress Score at entry (before) and exit (after) Can you tell what this line is?

Plotting Paired Data

Plotting Paired Data

Plotting Paired Data

Agreement: Bland-Altman Plot

Agreement: Bland-Altman Plot

https://www.researchgate.net/figure/B land-Altman-plot-N-181-image-samples-of-the-difference-against-average-for-THz-
IQA_fig4_322907411
Average of reference and Fish_bb estimated MOS

Bland-Altman Plot \& Treatment Effects

Tukey mean difference or Bland Altman plot

Profile Plot

Panel Data Several Time Points

Treatment

- Group 1 Patients
- Group 2 Patients
-- Group 1
- Group 2

Panel Data Several Time Points

Treatment

- Group 1 Patients
-- Group 2 Patients
- Group 1
- Group 2

Every patient is a "cluster" of measures
Treatment groups independent
Cross-over designs => Treatment groups dependent

Clustered Data

Clustered Data

Mean Location $1=38$
Mean Location $2=48$
Uninformative overall mean $=43$
https://scholars.duke.edu/person/stephen.vaisey

Clustered Data

https://scholars.duke.edu/person/stephen.vaisey

Between and Within Statements

https://scholars.duke.edu/person/stephen.vaisey

Between and Within Variance, Cluster = Group

A

B
Within-group variation
(i.e. Variability within each group)

Between and Within Cluster/Group Variance

Between variance $=$ average distance of (each) cluster/group means to overall mean
Overall mean
Cluster/group means

Within variance $=$ average variance of observations to their cluster/group means
Variance of each cluster/group separately
Average of these variances

Intraclass Correlation Coefficient ICC

$$
\begin{gathered}
I C C=\frac{\text { Between cluster } / \text { group variance }}{\text { Total variance }} \\
\rho=\frac{\tau^{2}}{\tau^{2}+\sigma^{2}}
\end{gathered}
$$

τ^{2} (tao) is the between cluster/group variance σ^{2} is the within cluster/group variance

ICC is a new descriptive statistic that describes where the variance "lives"

A new descriptive statistic that becomes available when you deal with clustered or panel data

With an ICC of 100\% individual characteristics are defined by its group/cluster

Cluster Example

https://scholars.duke.edu/person/stephen.vaisey

Panel Example

Score over time

Bella Flora
https://scholars.duke.edu/person/stephen.vaisey

Panel Example

Score over time

https://scholars.duke.edu/person/stephen.vaisey

Between and Within Statements

Panel Example

Score over time
 ```R function aov(score~subject)```

https://scholars.duke.edu/person/stephen.vaisey

Questions

Quantifying Variance: Solving the Riddle

Eastern Newt / Red Spotted Newt (Adult)

 (Juvenile Eastern Newt)

Northern Dusky Salamander

Northern Two-Lined Salamander

Marbled Salamander

Summary

Simple tests, Wilcoxon Signed Rank Test

Plotting paired data
Bland-Altman plot (agreement between methods)

Between cluster/group variance Intraclass Correlation Coefficient - where the variance lives!

Exercises

Plots (profile, Bland-Altman)

Perform Wilcoxon signed rank

Calculate and interpret ICC

Thanks for your attention

Variance

$$
\operatorname{Var}(Y)=\sigma^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}
$$

i Subscript for every observation

$$
\sum_{i=1}^{N} \quad \text { Sum of content in () from } 1 \mathrm{zu} \mathrm{~N}
$$

N is the number of observations
\bar{y} is the overall mean
y_{i} is every observation

Variance is the average distance from observations to their mean

What is the average of this data set?

36, 37, 38, 39, 40

What is the average of this data set?

$$
36,37,38,39,40
$$

The average is 38

What is the variance?

$36,37,38,39,40$

$$
\begin{gathered}
36-38,37-38,38-38,39-38,40-38 \\
-2,-1,0,1,2 \\
-2^{2},-1^{2}, 0^{2}, 1^{2}, 2^{2}
\end{gathered}
$$

The variance is the average of this new data series 2.5

Between Group Variance

i Subscript for every observation
j Subscript for every group
n_{j} is the sample size of every group
M is the number of groups
\bar{y}_{j} is the mean of each group
\bar{y} is the overall mean

Between Group Variance

i Subscript for every observation
j Subscript for every group
n_{j} is the sample size of every group
M is the number of groups
\bar{y}_{j} is the mean of each group
\bar{y} is the overall mean

Between Variation $\left(Y_{i j}\right)=\sum_{j=1}^{M} n_{j}\left(\bar{y}_{j}-\bar{y}\right)^{2}$

Within Group Variance

i Subscript for every observation
j Subscript for every group
n_{j} is the sample size of every group
M is the number of groups
\bar{y}_{j} is the mean of each group
\bar{y} is the overall mean

$$
y_{i j} \text { is the ith observation of group } \mathrm{j}
$$

$$
\text { Within } \operatorname{Variation}\left(Y_{i j}\right)=\sum_{j=1}^{M} \sum_{i j=1}^{N_{i j}}\left(y_{i j}-\bar{y}_{j}\right)^{2}
$$

Analysis of Variance ANOVA Table

SS = Sum of Squares = Sum of Squared Differences

ANOVA will be covered on the regression course in October

l							
ANOVA							
Source of Variation	SS	$d f$	MS	F	P-value	Fcrit	
Between Groups	$\mathbf{2 0 7 . 2}$	2	103.6	7.6952	0.0023	3.3541	
Within Groups	$\mathbf{3 6 3 . 5}$	27	13.4630				
Total							

Variance Partition Table

SS = Sum of Squares = Sum of Squared Differences

calculate it regardless of independent/dependent data
Provides descriptive statistics at two levels

ANOVA						
Source of Variation	SS	$d f$	MS	F	P-value	F crit
Between Groups	207.2	2	103.6	7.6952	0.0023	3.3541
Within Groups	363.5	27	13.4630			
Total	570.7	29				

