

Non-Normality Normality Tests and QQ-plots

Dr. Beatriz Vidondo Veterinary Public Health Institute UniBe

Identify non-Normal data visually and by testing for it

Compare non-Normal groups

Multiple comparison corrections

Who you Want to Call?

GHOSTBUSTERS

Who you Want to Call?

Percentiles!

Box and Whiskers Plot (Normal)

Box and Whiskers Plot (Skewed)

Empirical Cumulative Distribution Function

16

Percentiles

- Sort observations from min to max
- Take 100 segments (1%-segments)
- 25th percentile is the value below which 25% of the data can be found

80th percentile is the value below which 80% of the data is found

For someone as tall as the 80th percentile, 80% of people are shorter

Quantile Quantile Plot QQ-Plot

"a graphical method for comparing two probability distributions by plotting their quantiles against each other"

_Wilk, M.B.; Gnanadesikan, R. (1968)

Skewed Right

https://seankross.com/2016/02/29/A-Q-Q-Plot-Dissection-Kit.html

Skewed Right

Normal Q-Q Plot

Right Skew and Log Transformation

https://www.medcalc.org/manual/log-transformation.php

Skewed Left

https://seankross.com/2016/02/29/A-Q-Q-Plot-Dissection-Kit.html

Skewed Left

Normal Q-Q Plot

Ζ

Bimodal

https://seankross.com/2016/02/29/A-Q-Q-Plot-Dissection-Kit.html

Bimodal

Normal Q-Q Plot

Normality Tests – Each Group Separately

When our research question is about comparing two groups We need to test each group separately

https://www.datanovia.com/

Normality Tests

Shapiro-Wilk R function shapiro.test()
Ho: data is Normally distributed
If p-value > 0.05 we can not reject Ho

Kolmogorov-Smirnov R function ks.test()
One-sample test to compare to Normal or a two-samples test
Ho: two samples were drawn from the same distribution
x <- rnorm(50) ; y <- runif(30)
Do x and y come from the same distribution?
ks.test(x, y)</pre>

https://www.statology.org/test-for-normality-in-r/

Comparing Independent non-Normal Distributions

Mann–Whitney U Test

Given two identically shaped and scaled distributions, Ho: are the medians different? Mann–Whitney U Test

Wilcoxon 1945 Mann & Whitney 1947 Mann–Whitney–Wilcoxon https://www.statstest.com/mann-whitney-u-test/

R function wilcox.test($y \sim x$, paired = FALSE)

Kruskal Wallis Test: More than Two Groups

engagement score

https://statistics.laerd.com/spss-tutorials/kruskal-wallis-h-test-using-spss-statistics.php

Kruskal Wallis Test

W. H. Kruskal, W. A. Wallis 1952 One-way ANOVA on ranks

Similar assumption as Mann-Whitney U

For identically shaped and scaled distribution for all groups, Ho: are the medians different?

Kruskal Wallis Test

https://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_one-way_analysis_of_variance

The more comparisons we make, the higher the chances of rejecting Ho

One comparison Significance level = 0.05

<u>Reduce</u> the level of significance (alfa)

<u>for each comparison</u> So that the probability of getting <u>one wrong</u> is the same as if only one comparison was made

Goal: compare each pair of medians/means (or the one of interest) WHILE achieving an overall Type I error < 5%

R function dunn.test()

dunn.test(y~x, method = "bonferroni")

Performs a Kruskal Wallis test with Bonferroni correction

For Non-Normal (independent) groups comparisons
dunn.test(y ~ x, method = "bonferroni")
pairwise.wilcox.test(y,x, p.adjust.method = "bonferroni")
pairwise_wilcox_test(y,x, p.adjust.method = "bonferroni")

For Normal (independent) group comparisons

stats::pairwise.t.test(y ~ x, p.adjust.method = "bonferroni")
rstatix::pairwise_t_test(y ~ x, p.adjust.method = "bonferroni")
https://rpkgs.datanovia.com/rstatix/

Reasons Not to Correct p-values

- The sample size (n) calculation depends on both type I (alfa) and type II (beta) errors
- So if we decrease alfa and don't increase n, then beta error increases (to keep the equation)
- Result: We loose statistical power
- We would need to increase the sample size to keep the same power
- This is a problem when sample size is small (occurs often)
- Solution: focus on fewer comparisons

Summary

- Skewness, kurtosis, modality, zero-inflation
- Percentiles (Ghostbusters! ③) and ecdf
- QQplots and Normality tests (Shapiro-Wilk, Kolmogorov-Smirnov)
- Mann Whitney U test to compare 2 groups (wilcox.test())
- Tests that include multiple comparison corrections (pairwise comparisons with Bonferroni correction)

Table to Choose the Right Test

Measurement scale and distribution of dependent (outcome) variable (-> COLUMNS)
 Study objective related to type and scale of independent (often group) variable (->ROWS)
 Independent or dependent observations between subjects?

	Type of dependent variable ("outcome" or y-variable)			
Study objective	Interval data (normally distributed measurements)	Ranks, Scores, or non-normally distributed measurements	Binary outcome (two levels)	Survival Time
Describe a <u>single</u> study group (summaries, frequencies)	Mean, median, mode, SD, SEM, percentiles	Median, range, interquartile range, percentiles	Freq., Proportion (Prevalence) + 95% CI	Kaplan Meier survival curve
Compare a <u>single</u> study group to a fixed (population) value	Single sample <i>t</i> test	Wilcoxon Signed- Rank test	Single sample proportion test	
Compare <u>two independent</u> study groups	Independent sample <i>t</i> test	Two-sample Wilcoxon (Rank Sum) test	Two-sample proportions test (Chisquare, FET)	Log-rank test or Mantel-Haenszel
Compare <u>two paired</u> (dependent) sample study groups	Paired sample <i>t</i> test	Paired sample Wilcoxon (Signed- Rank) test	McNemar's test, Kappa statistic	Conditional proportional hazards regression
Compare <u>three or more</u> <u>unmatched</u> (independ.) study groups	One-way ANOVA	Kruskal-Wallis Test	Proportions test (Chisquare) Logistic Regression	Cox proportional hazard regression
Compare <u>three or more</u> <u>matched</u> (dependent) groups	Multiway ANOVA	Friedman test	Cochrane Q	Conditional proportional hazards regression
Quantify <u>correlation</u> between two variables	Pearson correlation	Spearman Rank correlation	Contingency coefficients	
Predict outcome value from another interval or categorical variable	Generalized linear Models: Simple Linear regression or ANOVA	Nonparametric regression	Cross tabulation (Odds ratio), Simple logistic regression	Cox proportional hazard regression
Predict outcome value from several measured (interval), categorical or binomial variables	Generalized linear Models: Multivariable Linear regression or ANOVA	Generalized linear models accommodating nonparametric components	Stratified cross tables, multiple logistic regression	Cox proportional hazard regression

Questions

Thanks for your attention

b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Correlation Coefficients Association Continuous Variables

Dr. Beatriz Vidondo Veterinary Public Health Institute UniBe

Understand correlation coefficients and know when to apply which type of correlation coefficient

Take appropriate choices when deleting/excluding missing values to calculate correlation

Interpret correlation correctly

numerical measure of some type of association, meaning a statistical relationship between two variables

Do they vary "together"?

Dancing statistics: explaining the statistical concept of correlation through dance – YouTube

https://www.youtube.com/watch?v=VFjaBh12C6s

numerical measure of some type of association, meaning a statistical relationship between two variables

Variance of one variable:
$$Var(Y) = \sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \bar{y})^2$$

numerical measure of some type of association, meaning a statistical relationship between two variables

Variance of one variable:
$$Var(Y) = \sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \overline{y})^2$$

Covariance between 2 vars: $Cov(X,Y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$

numerical measure of some type of association, or a statistical relationship between two variables

Variance of one variable:
$$Var(Y) = \sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \overline{y})^2$$

Covariance between 2 vars: $Cov(X,Y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$

Correlation Coefficient (Pearson):
$$r_p = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

Different Correlation Coefficients

Pearson - a measure of the strength and direction of the *linear* relationship between two variables

Spearman - a measure of how well the relationship between two variables can be described by a monotonic function

Kendall - measure of the portion of ranks that match between two variables

Pearson vs. Spearman

Spearman correlation coefficient uses the ranks R of the variables instead of the variables

$$r_p = \frac{cov(X,Y)}{\sigma_X \sigma_Y}; \qquad r_s = \frac{cov(R(X),R(Y))}{\sigma_{R(X)} \sigma_{R(Y)}}$$

Kendall Rank Correlation Coefficient

 $\tau_s = \frac{number \ of \ concordant \ pairs \ -number \ of \ discordant \ pairs}{total \ number \ of \ possible \ pairs}$

Interpretation

Renders values in the range from -1 to +1, where ±1 indicates the strongest possible agreement and 0 the strongest possible disagreement

Interpretation

To be able to interpret correctly, always plot a scatterplot

Interpreting Correlation

- 1. Distortion
 - 1. Distortion by outliers
 - 2. Distortion by missing values
- 2. Non-Linear and Non-monotonic relationships
- 3. Correlation does not mean causation

Distortion by Outliers

https://www.jmp.com/en_hk/statistics-knowledge-portal/what-is-correlation/correlation-coefficient.html

Always Calculate With and Without Outliers

https://www.jmp.com/en_hk/statistics-knowledge-portal/what-is-correlation/correlation-coefficient.html

Distortion by Missing Values

Assumption: Missing Values Completely at Random (MCAR) Need to delete/exclude missing values NA -> otherwise ERROR Deletion/exclusion causes bias in results

Descriptive analysis report % of missing for each variable

Consider to discard variables with % missing > 10%

Missings in the «outcome variable» need to be discarded listwise (the full row, or the full 'case')

Deleting Missing Values

Important when making large Correlation Matrices

Listwise deletion (complete-case analysis)

List = observation = row = case = patient removes the whole row if any variable value is missing (casewise) => fewer cases => better to delete some variables

Pairwise deletion (available-case analysis)

For any two pair of variables, delete rows with missings makes the most of the data available, but uses a different **sample size** every time => might result in biased results

Options To Delete Missing Values

R function cor()

na.rm = TRUE/FALSE should NA's be removed?

use = "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs"

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/cor

Options To Delete Missing Values

- "everything" renders cor=NA whenever there are missings
- "na.or.complete" renders cor=NA if there are no complete cases
- "all.obs" only works when no missing values, otherwise ERROR
- "complete.obs" = listwise/casewise deletion (=> less data)
- "pairwise.complete.obs" = pairwise deletion (=> diff sample sizes)

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/cor

Option Missing Value Deletion

- R function cor()
- na.rm = TRUE/FALSE should NA's be removed?
- na.rm = TRUE is equivalent to use = "na.or.complete"
- na.rm = FALSE is equivalent to use = "everything"

Pearson vs Spearman

Pearson measures Linearity Spearman measures Monotonicity

Non-Monotonic associations require other specific non-linear models to capture the pattern

https://anyi-guo.medium.com/correlationpearson-vs-spearman-c15e581c12ce

Non-Linear and Non-Monotonic Associations

https://www.jmp.com/en_hk/statistics-knowledge-portal/what-is-correlation/correlation-coefficient.html

Require Specific Models and Additional Knowledge

https://www.jmp.com/en_hk/statistics-knowledge-portal/what-is-correlation/correlation-coefficient.html

Correlation Does Not Imply Causation

Causation requires knowledge of the causal mechanism: applying heat makes water boil Correlation is not multivariate, no control for confounders «On sunny days, one eats ice cream On sunny days one gets sun burn

No! ice cream causes sun burn»

https://www.eufic.org/en/understandingscience/article/correlation-vs.-causation-infographic

Pearson correlation coefficient measures linear associations Spearman rank correlation measures monotonic associations

Always plot histograms, scatter plots and check for outliers Always check proportion of missing values

Evidence for causation has to do with study design Correlation does not imply causation (regression takes into account confounding factors)

Plot a matrix of scatterplots and histograms

Calculate a correlation matrix

Missing value deletion: pairwise vs list-wise

Choose between Pearson or Spearman

Interpret results

Questions

Thanks for your attention

b UNIVERSITÄT BERN

Dependent Data – Paired, Clustered, Panel Data

Dependent Events

Dr. Beatriz Vidondo Veterinary Public Health Institute, UniBe

Identify paired data and plot it adequately

Name tests adequate to compare paired groups

Understand between group/cluster variability and Intraclass Correlation Coefficient

Paired t Test

Two samples of measures on the same individuals The paired measurements are not independent Paired-sample t test is a **one sample t-test** performed on the pairwise **differences** between the two measurements

- 1. Calculate the difference (d) between both measures
- 2. Calculate the mean (m) and the standard deviation (s) of d
- 3. Compare the average difference to 0 (one-sample t test)

Wilcoxon Tests

Frank Wilcoxon described two tests with his name in 1945 "Individual comparisons by ranking methods" Biometrics Bulletin

1) Wilcoxon Rank Sum Test (2 non-normal independent groups)
R function wilcox.test(y~x) default option paired = FALSE
(Mann-Whitney U)

2) Wilcoxon Signed Rank to test differences of paired data
R function wilcox.test(y~x, paired = TRUE)

Wilcoxon Signed Rank Test

Uses data ranks (ordering) instead of the actual data

Rank is a score to sort results

Two 'paired' samples lead to a series of differences, some of which are positive (+) and some negative (-)

Signed ranks take the corresponding signs (+) or (-)

Ranking Data

For 8 Blocks = experiment repetitions, n=8 groups Create an ordinal variable or score 1,2,3,4... n

Block	A	B	A-B	Rank	Signed Ranks:
1 .	209	151	58	8	eigneditkanker
2	200	168	32	7	
3	177	147	30	6	A-B=5 gets the smallest rank 1
4	169	164	5	1	6 is the next rank 2
5	159	166	—7	3	-7 is next rank but gets -3
6	169	163	6	2	-7 IS HEAL PAIR DUL YELS -0
7	187	176	11	5	
8	198	188	10	4	

Wilcoxon's Probability Table

TABLE II							
For Determining the Significance of Differences							
in Paired Experiments							
Number of Paired	Sum of rank	Probability					
Comparisons	numbers, +	of this total					
	or —, which-	or less					
	ever is less						
7	0	0.016					
7	2	0.047					
8	0	0.0078					
8	2	0.024					

Stress Score at entry (before) and exit (after) Can you tell what this line is?

Agreement: Bland-Altman Plot

Agreement: Bland-Altman Plot

https://www.researchgate.net/figure/B land-Altman-plot-N-181-imagesamples-of-the-difference-againstaverage-for-THz-IQA_fig4_322907411

Bland-Altman Plot & Treatment Effects

Tukey mean difference or Bland Altman plot

Profile Plot

Profile Plot

Are the Control and Sport groups here dependent or independent?

Panel Data Several Time Points

Treatment

- Group 1 Patients
- Group 2 Patients
- --- Group 1
- Group 2

Panel Data Several Time Points

Every patient is a "cluster" of measures Treatment groups independent Cross-over designs => Treatment groups dependent

Clustered Data

Clustered Data

Iocation1 Iocation2 Mean Location 1 = 38 Mean Location 2 = 48

Uninformative overall mean = 43

Clustered Data

Between and Within Statements

Between and Within Variance, Cluster = Group

https://www.datanovia.com/en/lessons/anova-in-r/

Between and Within Cluster/Group Variance

Between variance = average distance of (each) cluster/group means to overall mean

- **Overall** mean
- Cluster/group means

Within variance = average variance of observations to their cluster/group means

Variance of each cluster/group separately

Average of these variances

Intraclass Correlation Coefficient ICC

$$ICC = \frac{Between \ cluster/group \ variance}{Total \ variance}$$

$$\rho = \frac{\tau^2}{\tau^2 + \sigma^2}$$

 τ^2 (tao) is the between cluster/group variance σ^2 is the within cluster/group variance

ICC is a new descriptive statistic that describes where the variance "lives"

A new descriptive statistic that becomes available when you deal with clustered or panel data

With an ICC of 100% individual characteristics are defined by its group/cluster

Cluster Example

Panel Example

Panel Example

Between and Within Statements

Panel Example

Questions

Quantifying Variance: Solving the Riddle

Simple tests, Wilcoxon Signed Rank Test

Plotting paired data Bland-Altman plot (agreement between methods)

Between cluster/group variance Intraclass Correlation Coefficient – where the variance lives!

Plots (profile, Bland-Altman)

Perform Wilcoxon signed rank

Calculate and interpret ICC

Thanks for your attention

 $\boldsymbol{u}^{\scriptscriptstyle b}$

b UNIVERSITÄT BERN

Variance

 $Var(Y) = \sigma^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (y_{i} - \overline{y})^{2}$ *i* Subscript for every observation $\sum_{i=1}^{N} Sum \text{ of content in () from 1 zu N}$ N is the number of observations \overline{y} is the overall mean y_{i} is every observation

Variance is the average distance from observations to their mean

What is the average of this data set?

36, 37, 38, 39, 40

40

What is the average of this data set?

36, 37, 38, 39, 40

The average is 38

What is the variance?

https://scholars.duke.edu/person/stephen.vaisey

41

36, 37, 38, 39, 40

$$-2^2$$
, -1^2 , 0^2 , 1^2 , 2^2

The variance is the average of this new data series 2.5

Between Group Variance

i Subscript for every observation *j* Subscript for every group n_j is the sample size of every group M is the number of groups $\overline{y_j}$ is the mean of each group \overline{y} is the overall mean

Between Group Variance

i Subscript for every observation *j* Subscript for every group n_j is the sample size of every group M is the number of groups \overline{y}_j is the mean of each group \overline{y} is the overall mean

Between
$$Variation(Y_{ij}) = \sum_{j=1}^{M} n_j (\overline{y}_j - \overline{y})^2$$

Within Group Variance

i Subscript for every observation j Subscript for every group n_j is the sample size of every group M is the number of groups \overline{y}_j is the mean of each group \overline{y} is the overall mean y_{ij} is the ith observation of group j

Within Variation(
$$Y_{ij}$$
) = $\sum_{j=1}^{M} \sum_{ij=1}^{N_{ij}} (y_{ij} - \overline{y}_j)^2$

Analysis of Variance ANOVA Table

SS = Sum of Squares = Sum of Squared Differences

ANOVA will be covered on the regression course in October

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	207.2	2	103.6	7.6952	0.0023	3.3541
Within Groups	363.5	27	13.4630			
Total	570.7	29				

Variance Partition Table

SS = Sum of Squares = Sum of Squared Differences calculate it regardless of independent/dependent data Provides descriptive statistics at two levels

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	207.2	2	103.6	7.6952	0.0023	3.3541
Within Groups	363.5	27	13.4630			
Total	570.7	29				