Basic Statistics:
 Inference about

 proportions and rates
Topics

- Dichotomous data: binomial distribution, proportions, risk ratios, odds ratios
- Contingency tables, chi-squared test
- Events rates, rate ratios
- Time to event data: Lifetables, Kaplan Meier survival curves, log-rank test

A game with a 20\% success probability

- Let's play a chance game with a 20% probability of success
- We repeat the game with different length of sequence
- The number of "single games" (sample size) will vary
- We look how many times we win in a given number of single games and calculate the fraction of wins
- We repeat that 2000 times and look at histograms of the fraction of wins

Percentage of successes in samples of size 3

Percentage of successes in samples of size 5

Percentage of successes in samples of size 100

Percentage of successes in samples of size 50

Percentage of successes in samples of size 300

Percentage of successes in samples of size 500

The larger \mathbf{N}

The closer the observed percentage of «events» is to the true probability of event

True probability is $\mathbf{2 0 \%}$

Die Binomial Distribution

Fig. 15.2 Binomial distribution for various values of π and n. The horizontal scale in each diagram shows

Binomial Distribution with success probability π

$\mathrm{X}=$ \# of successes, $\mathrm{N}=$ \# number of draws

$$
\operatorname{Prob}(X=k)=\frac{N!}{k!(N-k)!} \cdot \pi^{k} \cdot \pi^{N-k}
$$

Mean: $\quad E(X)=N \cdot \pi$

Variance: $\operatorname{Var}(X)=N \cdot \pi \cdot(1-\pi)$
In R implemented in binom «family» dbinom, rbinom, pbinom, qbinom (as for norm «family»

Binomial Distribution for true success probability $\pi=0.3$

$x<-0: 20$
plot(x, dbinom(x, size=20, prob=1/3), type="h", ylim=c(0,0.2),xlab = ("Number of successes"))

The proportion is an an unbiased estimator of the success probability π

Data: k events among N persons
Proportion: $p=\frac{k}{N}$
Expectation of the proportion under repeated sampling with size N

$$
E(P)=E\left(\frac{X}{N}\right)=\frac{1}{N} E(X)=\frac{1}{N} N \pi=\pi
$$

Standard error of a proportion

$\operatorname{SE}(\mathrm{p})=\sqrt{\frac{\pi \cdot(1-\pi)}{\mathrm{N}}}$

The proportion is a mean

Let's code the the event of interest as
0 : no event
1: event
Example data (N=10): 0, 1, 0, 0, 0, 1, 1, 0, 1, 0

$$
p=\frac{\# \text { events }}{N}=\frac{\sum_{i=1}^{n} x_{i}}{N}=\frac{4}{10}=0.4
$$

Formula for the sample mean

The proportion is a mean

This means:
According to the central limit theorem the sampling distribution of the proportion is approximately normal for large samples.
\Rightarrow We can apply standard methods for inference about means using the normal approximation.

Comparing two risks from a RCT on lowering LDL cholesterol

Result /
Event?

Time

Randomized Study (i.e. treamtent is randomly allocated)

- Does Cholestesin reduce mortality ?
- Group1 get's Cholestesin
- Group 2 get's Placebo
- Deaths over 2 years : 20/150 versus $31 / 150$

Results

	died	did not die	
Cholestisin	120 (13.3\%)	130	150
Placebo	\| 31 (20.7\%)	119	150

95% confidence interval for a proportion

Lower end of the 95\% CI : \quad observed proportion

Upper end of the 95\% CI :

$$
\mathrm{p}+1.96 \sqrt{\frac{\mathrm{p} \cdot(1-\mathrm{p})}{\mathrm{N}}}
$$

Calculations for placebo

$\mathrm{P}=\mathbf{2 0 . 6 7 \%}$

$\begin{aligned} \mathrm{SE}(\text { p for placebo }) & =\sqrt{\frac{0.2067 \cdot(1-0.2067)}{150}}=\sqrt{\frac{0.2067 \cdot 0.7933}{150}}= \\ & =\sqrt{\frac{0.163875}{150}}=\sqrt{0.001093}=0.03306\end{aligned}$

95\% CI for Placebo

lower end of $\mathbf{9 5 \%}$ CI : upper end of $\mathbf{9 5 \%}$ CI :
$0.2067+1.96 \cdot 0.03306=0.271$

Calculations for Cholestisin

$$
P=13.33 \%
$$

$\operatorname{SE}\left(\mathrm{p}\right.$ for Cholestisin) $=\sqrt{\frac{0.1333 \cdot(1-0.1333)}{150}}=\sqrt{\frac{0.1333 \cdot 0.8667}{150}}=$

$$
=\sqrt{\frac{0.115531}{150}}=\sqrt{0.000770}=0.027756
$$

95\% CI for Cholestisin

lower end for 95\% CI : upper end of $\mathbf{9 5 \%}$ CI :
$0.1333+1.96 \cdot 0.027756=0.188$

CI's for proportions in \mathbf{R}

The normal approximation (also called Wald method) is poor if N^{*} p or $\mathrm{N}^{*}(1-\mathrm{p})<10$.

There are more precise methods:
prop.test uses the "Wilson score method"
binom.test uses the exact CI's based on the binomial distribution

For a comparison of methods see: Newcombe. Stat Med 1998;17:857-72

Calculations for Cholestisin

$>$ prop.test $(x=20, n=150)$ 95 percent confidence interval: 0.085299270 .20077120
$>$ binom.test (x = 20, $\mathrm{n}=150$) 95 percent confidence interval: 0.083383810 .19838697

Our result: 0.0790 .188

Caution: the normal approximation will sometimes result in CI upper bounds >1 or lower bounds <0.

Difference of two proportions

$S E\left(p_{\text {Placebo }}-p_{\text {Cholestisin }}\right)=\sqrt{S E\left(p_{\text {Placebo }}\right)^{2}+S E\left(p_{\text {Cholestisin }}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{p_{\text {Placebo }} \cdot\left(1-p_{\text {Placebo }}\right)}{N_{\text {Placebo }}}+\frac{p_{\text {Cholestisin }} \cdot\left(1-p_{\text {Cholestisin }}\right)}{N_{\text {Cholestisin }}}} \\
& =\sqrt{0.03306^{2}+0.027756^{2}}=0.043167
\end{aligned}
$$

CI for the difference in risk between Placebo and Cholestisin

lower end $95 \% \mathrm{CI}=(0.2067-0.1333)-1.96 \cdot 0.043167$

$$
=0.0733-1.96 \cdot 0.043167=-0.011
$$

upper end $95 \% \mathrm{CI}=(0.2067-0.1333)+1.96 \cdot 0.043167$

$$
=0.0733+1.96 \cdot 0.043167=0.158
$$

95% CI for the difference in mortality risk ranges from
-1.1% to 15.8%

Interpretation

- Patients treated with placebo had a 7.3% higher risk of death compared to patients treated with Cholestisin.
- With 95% confidence the difference in risk of death is between -1.1% und 15.8%.
\Rightarrow We expect a p-value >0.05

Getting the P-value

$$
\mathrm{Z}-\text { value }=\frac{0.0733}{0.043167}=1.7
$$

```
z <- pdiff/pdiff.se
[1] 1.698821
p <- 2*pnorm(-abs(z))
[1] 0.08935299
```


$\rightarrow \mathbf{P}$-value $=0.09$

Interpretation of the p-value as conditional probability

Assuming no treatment effect, there is a 9% probability to observe a difference of 7.3% or greater.

Two sample test for proportions in \mathbf{R}

> prop.test(cbind(c $(31,20), c(119,130))$)

2-sample test for equality of proportions with continuity correction
data: cbind(c(31, 20), c(119, 130))
X-squared $=2.3624, d f=1, p$-value $=0.1243$
alternative hypothesis: two.sided
95 percent confidence interval:

$$
-0.0179395 \quad 0.1646062
$$

sample estimates:
prop 1 prop 2
0.20666670 .1333333

Risk ratios

	1 dead	not dead	
Cholestisin	\| 20 (13.3\%)	130	150
Placebo	131 (20.7\%)	119	150

Mortality risk for patients with cholestisin $=20 / 150 \quad=13.3$ pro 100
Mortality risk for patients with placebo $=31 / 150=20.7$ pro 100
Risk Ratio $(R R)$ for death $=0.133 / 0.207=0.64$

How now to get the 95\% CI for RR?

Would be easy if we could use

$\operatorname{SE}\left(\right.$ quant $_{\mathrm{G} 1}-$ quant $\left._{\mathrm{G} 2}\right)=\sqrt{\operatorname{SE}^{2}\left(\text { quant }_{\mathrm{G} 1}\right)+\mathrm{SE}^{2}\left(\text { quant }_{\mathrm{G} 2}\right)}$

Logarithms

- The division becomes a substraction...
- $\ln (\mathrm{RR})=\ln \left(\right.$ risk $_{1} /$ risk $\left._{0}\right)=\ln \left(\right.$ risk $\left._{1}\right)-\ln \left(\right.$ risk $\left._{0}\right)$
- If we now would have a st.error(ln(risk)), we could use our rule how to combine SE's for differences of quantities of interest.

$$
\mathrm{SE}\left(\text { quant }_{\mathrm{G} 1}-\text { quant }_{\mathrm{G} 2}\right)=\sqrt{\mathrm{SE}^{2}\left(\text { quant }_{\mathrm{G} 1}\right)+\mathrm{SE}^{2}\left(\text { quant }_{\mathrm{G} 2}\right)}
$$

Informal reason for using $\ln (R R)$ Simulation of studies

- 10 '000 simulated studies
- 2 treatments (groups) are compared
- True risk in group 1: 10\%

$$
->R R=3
$$

- True risk in group 2: 30\%
- Number of persons per group : 100, 300 or 1000

RR with 300 Group 2 and 300 Group 1

RR with 1000 Group 2 and 1000 Group 1

$\ln (R R)$ with 1000 Group 2 and 1000 Group 1

The delta method

- Allows to obtain approximately a st.error for $\ln (\mathbf{p})$ from the $\mathrm{SE}(\mathrm{p})$

$$
\mathrm{SE}(\mathrm{p})=\sqrt{\frac{\mathrm{p} \cdot(1-\mathrm{p})}{\mathrm{N}}}
$$

- Using the notation $\mathrm{p}=\mathrm{d} / \mathrm{n}$, we obtain

$$
\text { st.error }(\ln (p))=\sqrt{1 / d-1 / n}
$$

The 95 \% confidence interval for a relative risk

$\mathrm{RR}=\operatorname{risk}_{1} / \operatorname{risk} 0=\left(\mathrm{d}_{1} / \mathrm{n}_{1}\right) /\left(\mathrm{d}_{0} / \mathrm{n}_{0}\right)$
On \ln scale: $\quad \ln ($ risk $1 /$ risk 0$)=\ln ($ risk 1$)-\ln ($ risk 0$)$
and: s.e. $(\ln ($ risk $1 /$ risk 0$))=$ s.e. $(\ln ($ risk1 $)-\ln ($ risk 0$))$
Using: $\quad \mathrm{SE}\left(\right.$ quant $_{\mathrm{G} 1}-$ quant $\left._{\mathrm{G} 2}\right)=\sqrt{\operatorname{SE}^{2}\left(\text { quant }_{\mathrm{G} 1}\right)+\operatorname{SE}^{2}\left(\text { quant }_{\mathrm{G} 2}\right)}$

$$
\operatorname{st.error}(\ln (p))=\sqrt{1 / d-1 / n}
$$

produces a 95\% CI for the $\ln (\mathbf{R R})$
$\ln (R R) \pm 1.96 * \sqrt{1 / d_{1}-1 / n_{1}+1 / d_{0}-1 / n_{0}}$

Cholestisin Study

	1 dead	not dead	\|
Cholestisin	\| 20 (13.3\%)	130	\| 150
Placebo	131 (20.7\%)	119	\| 150

Mortality risk for patients with cholestisin $=20 / 150 \quad=13.3$ pro 100
Mortality risk for patients with placebo $=31 / 150=20.7$ pro 100
Risk Ratio $(R R)$ for death $=0.133 / 0.207=0.64$

95\% CI for RR

$$
\text { SE for } \begin{aligned}
\ln (R R) & =\sqrt{\left(\frac{1}{31}-\frac{1}{150}\right)+\left(\frac{1}{20}-\frac{1}{150}\right)} \\
& =\sqrt{(0.03226-0.006667)+(0.05-0.006667)} \\
& =\sqrt{0.025591+0.043333}=\sqrt{0.068925}=0.26254
\end{aligned}
$$

lower end $95 \% \mathrm{CI}$ of $\ln (\mathrm{RR})=\ln (\mathrm{RR})-1.96 \cdot \mathrm{SE}($ of $\ln (\mathrm{RR}))$

$$
\begin{aligned}
& =-0.438255-1.96 \cdot 0.26254 \\
& =-.9528333
\end{aligned}
$$

lower end $95 \% \mathrm{CI}$ of $\mathrm{RR}=\exp ($ lower end $95 \% \mathrm{CI}$ of $\ln (\mathrm{RR}))$

$$
=\exp (-.9528333)=0.3856
$$

95\% CI of RR

$$
\text { upper end } 95 \% \text { CI of } \begin{aligned}
\ln (R R) & =\ln (R R)+1.96 \cdot \mathrm{SE}(\mathrm{of} \ln (\mathrm{RR})) \\
& =-0.438255+1.96 \cdot 0.26254 \\
& =0.0763235
\end{aligned}
$$

$$
\begin{aligned}
\text { upper end } 95 \% \text { CI of RR } & =\exp (\text { upper end } 95 \% \text { CI of } \ln (R R)) \\
& =\exp (0.07632347)=1.0793
\end{aligned}
$$

Getting a p-value

$$
\begin{aligned}
\text { Z-value } & =\frac{\ln (R R)}{\mathrm{SE}(\mathrm{of} \ln (\mathrm{RR}))} \\
& =\frac{-0.438255}{0.26254}=-1.67
\end{aligned}
$$

Almost identical Z-value as for the risk difference

Odds

Risk

$$
\mathbf{a} / \mathbf{b}=0.3 / 0.7=0.43 \quad \mathbf{a} /(\mathbf{a}+\mathbf{b})=0.3 / 1=0.3
$$

$$
a=0.3 \quad b=0.7
$$

$\mathbf{a}=0.3$
$b=0.7$

Odds Ratio for the cholestisin study

Odds of death in cholestisin group Odds of death in placebo group $=20 / 130=0.15384615$
$=31 / 119=0.2605042$
Odds Ratio of death

$$
=0.15384615 / 0.2605042=0.59
$$

st.error for the (ln(Odds))

- Again using the delta method and the notation $\mathrm{p}=\mathrm{d} / \mathrm{n} \rightarrow$ Odds $=\mathrm{d} / \mathrm{h}$ where $\mathrm{h}=\mathrm{n}-\mathrm{d}$

$$
\text { st.error }(\ln (O d d s))=\sqrt{1 / d+1 / h}
$$

The 95 \% CI for the Odds Ratio

$$
\text { Odds Ratio }=\left(\mathrm{d}_{1} / \mathrm{h}_{1}\right) /\left(\mathrm{d}_{0} / \mathrm{h}_{0}\right)
$$

The $\mathbf{9 5 \%}$ confidence interval for the $\ln (O R)$ is then

$$
\ln (O R) \pm 1.96 * \sqrt{1 / d_{1}+1 / h_{1}+1 / d_{0}+1 / h_{0}}
$$

Example

```
| Myocardial infarction
Categories | or death
\begin{tabular}{rcccc} 
of BMI | & 1 & 0 & \(\mid\) & Total \\
Overweight & 200 & 716 & \(\mid\) & 916 \\
Normal & 95 & 477 & 1 & 572
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Total I & 295 & 1193 & 1 & 1,488 \\
\hline
\end{tabular}
\(\mathbf{O R}=\mathbf{O d d s} \mathbf{1}_{\mathbf{1}} / \mathbf{O d d s}_{\mathbf{0}}=\left(\mathrm{d}_{1} / \mathrm{h}_{1}\right) /\left(\mathrm{d}_{0} / \mathrm{h}_{0}\right)=.2793 / .1992=1.403\) \(\ln (\mathrm{OR})=0.3383\)
st.error \((\ln (\mathrm{OR}))=\sqrt{ }[(1 / 200)+(1 / 716)+(1 / 95)+(1 / 477)]=\)
\[
=\ldots . .=0.1379
\]
```


Then

$95 \%-\mathrm{CI} \ln (\mathrm{OR})=$

lower bound of $\mathrm{CI} \ln (\mathrm{OR})=0.3383-1.96^{*} 0.1379=0.0680$ upper bound of $\mathrm{CI} \ln (\mathrm{OR})=0.3383+1.96^{*} 0.1379=0.6086$
95%-lower bound of CI OR $=\exp (0.0680)=1.07$
95%-upper bound of CI OR $=\exp (0.6086)=1.84$

A short list of useful s.e. formulas "approximations"

$\mathrm{p}=\mathrm{d} / \mathrm{n}$	s.e. $(\ln \mathrm{p})=\sqrt{ }[1 / \mathrm{d}-1 / \mathrm{n}]$
$\mathrm{RR}=\mathrm{p}_{1} / \mathrm{p}_{0}$	s.e. $(\ln R \mathrm{R})=\sqrt{ }\left\{\left[1 / \mathrm{d}_{1}-1 / \mathrm{n}_{1}\right]+\left[1 / \mathrm{d}_{0}-1 / \mathrm{n}_{0}\right]\right\}$
odds $=\mathrm{d} / \mathrm{h}$	s.e. $(\ln$ odds $)=\sqrt{ }[1 / \mathrm{d}+1 / \mathrm{h}]$
$\mathrm{OR}=$ odds $_{1} /$ odds $_{0}$	s.e. $(\ln \mathrm{OR})=\sqrt{ }\left\{\left[1 / \mathrm{d}_{1}+1 / \mathrm{h}_{1}\right]+\left[1 / \mathrm{d}_{0}+1 / \mathrm{h}_{0}\right]\right\}$

Contincency tables, Pearsons chi-

 Squared test of independence
A general approach to testing independence between categorical variables

Calculate the expected cell frequencies assuming the treatment and outcome are independent

Remember $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) * \mathrm{P}(\mathrm{B})$ if A and B are independent

The Chi-Square statistic

Describes and uses the differences between observed and expected cell counts
The larger "in total" the differences the stronger we have evidence against the assumption of "no difference"

O -observed frequency per cell

$$
\chi^{2}=\sum_{\text {all cells }} \frac{(\mathrm{O}-\mathrm{E})^{2}}{\mathrm{E}}
$$

E-expected frequency per cell when the hypothesis of no difference in distribution is assumed

If indeed there is no difference then the Chi-Quadrat statistic (in a 2×2 table) follows a Chi-Square distribution with 1 degree of freedom

Example

$$
\begin{gathered}
\sum_{\begin{array}{c}
\sum_{\text {ioverallcells }}
\end{array} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=}^{\frac{(31-25.5)^{2}}{25.5}+\frac{(20-25.5)^{2}}{25.5}+\frac{(119-124.5)^{2}}{124.5}+\frac{(130-124.5)^{2}}{124.5}} \\
=2.8585
\end{gathered}
$$

Chi-Square Statistics for larger tables (r x c tables)

Chi-Square Statistics for larger tables (r x c tables)

Chi-Square Statistics for larger tables (r x c tables)

Current smoker	Underweig	Categor Normal	es of BMI Overweigh	Obese	Total
No I	13	212	441	130	796
Yes I	62	360	475	93	990
Total \|	75	572	916	223	1,786
Chi-sq $=$	$\sum_{\text {i over all cells }}$	$\left.\frac{i}{i}-E_{i}\right)^{2}$	$=57.3$	df	*(c-

p-value $=2.205 \mathrm{e}-12$

Why (r-1)*(c-1) degrees of freedom?

Current smoker	Underweig	Categor Normal	es of BMI Overweigh	Obese I	Total
No ।	13	212	441	130 \|	796
Yes I	62	360	475	931	990
Total I	75	572	916	223 \|	1,786

We use the column and row sums to estimate the expected counts und H_{0} of no association.

Given column and row sums, only $(r-1)(c-1)=3$ observed counts are 'free' to vary.

Chi-Square Distributions

Rates and rate ratios

Longitudinal studies

Studies where subjects are followed over time

- cohort studies in which a group of initially disease-free individuals is followed over time, and the incidence of disease is recorded.
- survival studies in which individuals are followed from the time of an event such as the diagnosis of disease, and disease recurrence or death is recorded.
- intervention studies in which subjects are randomised to two or more treatment regimens, and the occurrence of pre-specified outcomes is recorded.

We assume that subjects experience only one disease endpoint (it is always possible to examine time until the first occurrence).

Variable follow up times

In most longitudinal studies, individuals are followed for different lengths of time:

- logistic reasons: individuals recruited over time, but followed to the same end date
- new individuals may be enrolled during the study, because they have moved into the study area
- survival studies: delay between diagnosis and recruitment
- loss to follow up: e.g. emigration or withdrawal
- death from causes other than the one that is the focus of interest
- if the population of interest is defined by their age: e.g. women of child bearing age (ie.15-44 years)

Example - 5 year study of prostate cancer

- subjects were recruited to the study at varying times after diagnosis, and exited at different points in time

In follow up studies we observe at least two pieces information for each individual:

- whether they experience the disease event \mathbf{D}, and
- the length of time for which they were followed (the observation time).

An individual's observation time:

- starts when the subject joins the study
- stops at the earlier of:
- the time they develop the disease
- the time they are lost to follow-up
- the time the follow-up period ends

Rates

The rate of disease measures the occurrence of new events per unit time
To estimate a rate (λ), we:

1) Calculate the total number of events observed among all individuals, d
2) Calculate the sum of the individual observation times, T
3) Estimate the rate as:

$$
\text { rate, } \lambda=\frac{\text { number of events }}{\text { total person years of observation }}=\frac{d}{T}
$$

When T is measured in years it is called person-years-at- ${ }_{72}$ risk or pyar

Estimation of rates - example

57 lower respiratory infections were recorded during a 2-year study of 500 children. The total child-years of follow-up was $T=873$.

The rate of lower respiratory infection was estimated to be:

$$
\lambda=57 / 873=0.0653 \text { per year }
$$

This can also be expressed per 1000 child-years at risk, as:

$$
\lambda=57 / 873 \times 1000=65.3 \text { per } 1000 \text { child-years }
$$

Estimation of rates - example

In a data set from the Caerphilly study 796 of the participants were non smokers:

- 12'182.46 person-years at risk were observed and
- 118 events of myocardial infarction or death occurred

The rate is therefore $\lambda=118 / 12$ '182.46 $=0.0096861$

This can also be expressed per 1000 person-years at risk, as:

$$
\lambda=118 / 12.18246=9.6861 \text { per } 1000 \text { person-years }
$$

Poisson Distribution

- X be the number of independent events being observed in a fixed time span T :
- possible values are $0,1,2, \ldots$

Fig. 22.3 Poisson distribution for various values of μ. The horizontal scale in each diagram shows values of the number of events, d.

Poisson Distribution

The Poisson distribution is described by one parameter : μ
Poisson $(\mu):$ mean $=\mu$; variance $=\mu \quad \rightarrow \mathrm{SD}=\sqrt{\mu}$
Probability (to observe N events $)=$

$$
\mathrm{e}^{-\mu} \cdot \frac{\mu^{\mathrm{N}}}{\mathrm{~N}!}
$$

Important: We assume a fixed follow-up period T :

$$
\mu=\text { rate of events *T }
$$

st.err. of incidence rate

incidence rate $\lambda=$

Total Time

st.error (incidence rate) $=\frac{\sqrt{\mathrm{d}}}{\text {------------ }}$

Confidence interval for a rate working on the log scale

1. Derive a confidence interval for the log rate
2. Antilog this to give a confidence interval for the rate The standard error of the log rate is estimated by:

$$
\text { s.e.of } \ln (\text { rate })=\sqrt{\frac{1}{d}}=\frac{1}{\sqrt{d}}
$$

This depends only on $d,($ not on $T)$

95\% CI of rate : example

- We had the event rate for non-smokers $\lambda=9.6861$ per 1000 pyar
- \log rate $=\log (9.6861)=2.27$
- $\operatorname{se}(\log$ rate $)=1 / \sqrt{ } d=1 / \sqrt{ } 118=1 / 10.86=0.092$
- $95 \% \mathrm{CI}(\log$ rate $)=2.27-(1.96 \times 0.092)$ to $2.27+(1.96 \times 0.092)$ $=2.09$ to 2.45
- $95 \% \mathrm{CI}($ rate $)=\exp (2.09)$ to $\exp (2.45)$
$=8.085$ to 11.59 events per 1000 person-years

Use of cipossion from survival package for getting 95\% CI of rate

```
require(survival)# or library(survival)
(rate = 118/12182.46)
[1] 0.009686057
cipoisson(k=118, time = 12182.46)
    lower upper
0.008017405 0.011599589
1000*cipoisson(k=118, time = 12182.46)
    lower upper
    8.017405 11.599589
```


Comparing rates

$$
\text { Rate ratio }=\frac{\text { rate in exposed }}{\text { rate in unexposed }}=\frac{\lambda_{1}}{\lambda_{0}}=\frac{d_{1} / T_{1}}{d_{0} / T_{0}}
$$

We use the standard error of the $\underline{\log }$ rate ratio to derive confidence intervals and tests of the null hypothesis:
s.e. of $\log ($ rate ratio $)=\sqrt{1 / d_{0}+1 / d_{1}}$

To test the null hypothesis that the rates in the two groups are equal:

$$
z=\frac{\log (\text { rate ratio })}{\text { s.e. of } \log (\text { rate ratio })}
$$

Example 95\% CI for rate ratio

For the rate among the 990 smokers we have: 230 events in 13‘978.48 years of observation, thus $\lambda=16.45$ per 1000 pyar

$$
\begin{aligned}
\text { Rate ratio } & =\frac{16.45 \text { per } 1000 \text { py }}{9.6861 \text { per } 1000 \text { py }}=1.7 \text { and } \ln (R R)=0.53 \\
& \text { se of } \ln (R R)=\sqrt{\frac{1}{230}+\frac{1}{118}}=0.113
\end{aligned}
$$

$$
95 \% \mathrm{CI}(\log \text { rate ratio })=0.53-(1.96 \times 0.113) \text { to } 0.53+(1.96 \times 0.113)
$$

$$
=0.3085 \text { to } 0.751
$$

$$
95 \% \mathrm{CI} \text { (rate ratio) } \quad=\exp (0.3085) \text { to } \exp (0.751)
$$

$$
=1.36 \text { to } 2.12
$$

Survival analysis avoiding the assumption of a constant rate

- Analysis of time to an event
- Rate not assumed to be constant over time
- Concentrates on survival curve

Outline

- Life-table calculation on grouped information
- Kaplan-Meier survival calculation
- Log-rank test for comparing two survival curves

Describing prognosis using life-table calculations and the Survival curve

Fig. 26.1 Survival curve for patients with small-cell carcinoma of the bronchus treated with radiotherapy, drawn from life table calculations presented in Table 26.1.

A group of patients followed up after diagnosis

Fig. 22.1 Follow-up histories for 5 subjects in a study of mortality after a diagnosis of prostate cancer ($\mathrm{D}=$ died, $\mathrm{E}=$ emigrated, $\mathrm{W}=$ withdrew, $\bullet=$ reached the end of follow-up without experiencing the disease event).

at start of the intervals Inter- val 1Number surviving		
$\mathbf{2 4 0}$	Number of deaths	Number censored
2	12	0
3	9	0
\vdots	17	1
16	12	0
17	3	0
18		0

Life tables

Life tables

Inter- val	Number surviving	Number of deaths	Number censored
1	240	$\mathbf{1 2}$	$\mathbf{0}$
2	$\mathbf{2 2 8}$	9	0
3		17	1
\vdots	\vdots	\vdots	
16	7	1	
17	12	0	
18	3	0	

Number surviving at 2. interval $=240-12=228$

Life tables

Inter- val	Number surviving	Number of deaths	Number censored
1	240	12	0
2	228	9	0
3	219	17	1
\vdots	\vdots	\vdots	\vdots
16	23	$\mathbf{7}$	$\mathbf{1}$
17	$\mathbf{1 5}$	12	0
18	3	3	0

Number surviving at begin of 17 th interval $=23-7-1=15$

Life tables

Inter- val	Number surviving	Number of deaths	Number censored	$P($ death
1	$\mathbf{2 4 0}$	$\mathbf{1 2}$	0	$\mathbf{0 . 0 5 0 0}$
2	228	9	0	
3	219	17	1	
\vdots	\vdots	\vdots	\vdots	
16	23	7	1	
17	15	12	0	
18	3	3	0	

Probability (P) to die in 1 st interval $=12 / 240=0.05$

Life tables

Inter- val	Number surviving	Number of deaths	Number censored	Number at risk	P (death)
1	240	12	0	240.0	0.0500
2	228	9	0	228.0	0.0395
3	219	17	1	218.5	0.0778
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
16	23	7	1	22.5	0.3111
17	15	12	0	15.0	0.8000
18	3	3	0	3.0	1.0000

Life tables

Inter- val	Number surviving	Number of deaths	Number censored	Number at risk	P (death)	P (survival)
1	240	12	0	240.0	$\mathbf{0 . 0 5 0 0}$	$\mathbf{0 . 9 5 0 0}$
2	228	9	0	228.0	0.0395	
3	219	17	1	218.5	0.0778	
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	
16	23	7	1	22.5	0.3111	
17	15	12	0	15.0	0.8000	
18	3	3	0	3.0	1.0000	

Probability to survive the 1 . interval $=1-\mathrm{P}($ death $)$ in 1. interval $=$ $1-0.0500=0.9500$

Life tables

Inter- val	Number surviving	Number of deaths	Number censored	Number at risk	P (death)	P (survival)
1	240	12	0	240.0	0.0500	0.9500
2	228	9	0	228.0	0.0395	0.9605
3	219	17	1	218.5	0.0778	0.9222
\vdots						
16	23	7	1	22.5	0.3111	0.6889
17	15	12	0	15.0	0.8000	0.2000
18	3	3	0	3.0	1.0000	0.0000

Life tables

Inter- val	Number surviving	Number of deaths	Number censored	Number at risk	P (death)	P (survival)	Cumulative survival
1	240	12	0	240.0	0.0500	$\mathbf{0 . 9 5 0 0}$	$\mathbf{0 . 9 5 0 0}$
2	228	9	0	228.0	0.0395	$0.9605 \longrightarrow \mathbf{0 . 9 1 2 5}$	
3	219	17	1	218.5	0.0778	0.9222	
\vdots							
16	23	7	1	22.5	0.3111	0.6889	
17	15	12	0	15.0	0.8000	0.2000	
18	3	3	0	3.0	1.0000	0.0000	

$=$ Cumulative survival probability to survive up to the previous interval * probability to survive the current interval

Life tables

Inter- val	Number surviving	Number of deaths	Number censored	Number at risk	P (death)	P (survival)	Cumulative survival
1	240	12	0	240.0	0.0500	0.9500	0.9500
2	228	9	0	228.0	0.0395	$0.9605 \longrightarrow 0.9125$	
3	219	17	1	218.5	0.0778	$0.9222 \longrightarrow 0.8415$	
\vdots							
16	23	7	1	22.5	0.3111	0.6889	0.0943
17	15	12	0	15.0	0.8000	$0.2000 \longrightarrow 0.0189$	
18	3	3	0	3.0	1.0000	$0.0000 \longrightarrow 0.0000$	

Life-Table at one glance

Table 26.1 Life table showing the survival pattern of 240 patients with small-cell carcinoma of bronchus treated with radiotherapy.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Interval (months) since start of treatment i	Number alive at beginning of interval a_{i}	Deaths during interval d_{i}	Number censored (lost to follow-up) during interval c_{i}	Number of persons at risk $n_{i}=a_{i}-c_{i} / 2$	Risk of dying during interval $r_{i}=d_{i} / n_{i}$	Chance of surviving interval $s_{i}=1-r_{i}$	Cumulative chance of survival from start of treatment $S(i)=S(i-l) \times s_{i}$
1	240	12	0	240.0	0.0500	0.9500	0.9500
2	228	9	0	228.0	0.0395	0.9605	0.9125
3	219	17	1	218.5	0.0778	0.9222	0.8415
4	201	36	4	199.0	0.1809	0.8191	0.6893
5	161	6	2	160.0	0.0375	0.9625	0.6634
6	153	18	7	149.5	0.1204	0.8796	0.5835
7	128	13	5	125.5	0.1036	0.8964	0.5231
8	110	11	3	108.5	0.1014	0.8986	0.4700
9	96	14	3	94.5	0.1481	0.8519	0.4004
10	79	13	0	79.0	0.1646	0.8354	0.3345
11	66	15	4	64.0	0.2344	0.7656	0.2561
12	47	6	1	46.5	0.1290	0.8710	0.2231
13	40	6	0	40.0	0.1500	0.8500	0.1896
14	34	4	2	33.0	0.1212	0.8788	0.1666
15	28	5	0	28.0	0.1786	0.8214	0.1369
16	23	7	1	22.5	0.3111	0.6889	0.0943
17	15	12	0	15.0	0.8000	0.2000	0.0189
18	3	3	0	3.0	1.0000	0.0000	0.0000

The Kaplan-Meier Graph : The life-table calculation with infinitesimal small

Fig. 26.2 The Kaplan-Meier estimate of the survivor function, $S(t)$, together with upper and lower confidence limits, for 31 patients with primary biliary cirrhosis and central cholestasis.

Kaplan-Meier estimates of the survival curve

- Standard way to estimate and display the survival curve $S(t)$
- Assume that we know the exact follow up time for each individual
- Based on a conditional probability argument

Kaplan-Meier

Time	Number at risk	Number of deaths	Number censored	Pr (death)	Pr (survival)
19	31	1	0	0.0323	0.9677
48	30	1	0	0.0333	0.9667
96	29	1	0	0.0345	0.9655
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
1975	3	1	0	0.3333	0.6667
2338	2	0	1	0.0000	1.0000
2343	1	1	0	1.0000	0.0000

Kaplan-Meier

Time	Number at risk	Number of deaths	Number censored	$\operatorname{Pr}($ death $)$	Pr (survival)	Survivor function $\mathbf{S (t)}$
19	31	1	0	0.0323	0.9677	0.9677
48	30	1	0	0.0333	0.9667	0.9355
96	29	1	0	0.0345	0.9655	0.9032
\vdots						
1975	3	1	0	0.3333	0.6667	$\mathbf{0 . 1 1 0 5}$
2338	2	0	1	0.0000	1.0000	$\mathbf{0 . 1 1 0 5}$
2343	1	1	0	1.0000	0.0000	0.0000

Kaplan-Meier

Mantel-Cox method (log rank test)

Mantel-Cox method (log rank test)

Extension of Mantel-Haenszel procedure:

- Construct 2×2 table for each time at which an event occurs
- Derive contributions from table
- Combine across all times (strata)

Log rank test

Details of calculations are to hard for us

Data on mortality from primary biliary cirrhosis (PBC)

```
pbcdata <- read.table("pbc1bas.csv", sep=",", header=TRUE)
```

pbc.surv <- Surv(pbcdata\$time, pbcdata\$d==1)
surv.all <- survfit(pbc.surv ~ 1)
plot(surv.all)

Quite a bit of censored observations


```
surv.cirrhosis <- survfit(pbc.surv ~ pbcdata$cir0 )
plot(surv.cirrhosis, lty = 2:3)
legend(8, .9, c("No cirrhosis at entry", "No cirrhosis at
entry"),lty = 2:3)
```


. Log-Rank Test
survdiff (pbc.surv ~ pbcdata\$cir0)
Call:
survdiff(formula $=$ pbc.surv \sim pbcdata\$cir0)

N Observed Expected (O-E)^2/E (O-E)^2/V

| pbcdata\$cir0=0 | 131 | 58 | 77.5 | 4.9 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllll}\text { pbcdata\$cir0=1 } & 53 & 38 & 18.5 & 20.5\end{array}$

Chisq= 26 on 1 degrees of freedom, $p=3.48 e-07$

